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-ABSTRACT 

By exploiting an isomorphism between vectors and certain matrices, the 

theory of vector-valued continued fractions is developed as a special case of the 

theory of matrix-valued continued fractions. It is shown that if a given power 

series has coefficient vectors lying in Hilbert space, then the vector-valued Pade 

quotients derived from this series also lie in Hilbert space. Properties of the 

matrices occurring in the vector-matrix isomorphism are examined; in particular, 

it is shown that the numerical values of certain norms of a vector are equal to 

those of the corresponding norms of its companion matrix. The concept of a 

functional Padd table is introduced, and one of its properties is derived. 

1. INTRODUCTION 

In this paper we construct the formal theory underlying a numerical 

process for accelerating the convergence of vector sequences. Such 

sequences occur in the iterative solution of linear algebraic equations; they 

also arise quite naturally in numerical analysis in the following way: 

we are concerned with a function S(x) which is defined on a certain interval 

of the x axis; S(x) satisfies, for example, a differential or integral equation 

which we wish to solve; we discretize the problem and seek a vector s 

of solution values to the corresponding discrete problem which are defined 
at points of the x axis; we solve the discrete problem iteratively by 

selecting an initial approximation s,, to s and using a recursive scheme 
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of the form 

s ,n , I = 4(b) (,a = 0, I, .) 

to obtain a sequence of \ectors (H,,,) which, it is hoped, tends to s. 

The numerical convergence of a vector sequence {s,} may be accelerated 

by means of the vector F algorithm I 1X3 I. This algorithm entails the 

construction of a double sequence of \ectors (E,!“‘)} which ma>- be set in 

a two-dimensional arra>~, the vector c arm!., in which the suffix Y denotes 

a column and the superscript M a diagonal (Fig. I). The initial conditions 

for the construction of this array arc 

the vectors of formulas (1) are to he found in the first two columns of the 

t’ array-. The remaining members of the c’ arm\. are constructed 1~~. a simple 

recursive process involving sums, differences, and inverses of vectors. 

The sum and difference of two \ectors are defined by componentwise 

addition and subtraction, respectively. The inverse of the complex \-alued 

vector 

is taken to be 
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where the bar denotes a complex conjugate. The relationship used in 
the construction of the vector E array is 

Formula (4) concerns vectors lying at the four vertices of a lozenge in 
the E array (Fig. 2). The extreme right-hand member of this group is 

a (m) I 
@in 

r-1 
&@) 

*+1 

E!m+l) 

FIG. 2. 

expressed in terms of the remaining three. The vector E array is built 
up, column by column from left to right, by systematic use of formula 
(4)withr=O,l,...; m=O,l,... . It is a fact of considerable numerical 
experience that a vector d:), found in an even order column of the E array, 
provides a considerably better approximation to the limit s of the sequence 
{s,} than do any of the members of this sequence from which the vector 
e$T) in question is derived. 

In order to give the reader some idea of the power of this convergence 
acceleration technique, we display some numerical results concerning 
the numerical solution of an integral equation [2,3] by means of discretiza- 
tion and iteration as described above. The details concerning the particular 
integral equation, the discretization interval, and the numerical integration 
scheme used do not concern us here; it suffices to say that in this case the 
solution vector s to the discrete problem can be obtained with relative 
ease in another way; thus the various distances /ICY:) - s// (again the 

TABLE I 

m 0 2 4 6 

0 5.41101 

1 3.86450 0.507 11 

2 2.69179 0.04957 0.01263 

3 1.89641 0.01810 0.00203 0.00031 

4 1.36144 0.00912 0.00042 

5 0.99621 0.00508 

6 0.73976 
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definition of this distance does not concern us here) could be measured. 

In Table I we display a number of these distances. The successive distances 

given in the first column indicate that the original iterative scheme, 

converges slowly; however, as the distance 1 Em”‘) s i !, indicates, the 

transformed erector Q(“) offers a considerablv better approximation to s 

than is provided in this case by any of the \rrctors x,,, sl, . . , sg; indeed 

it is possible to show that in the example under consideration the original 

iterative c!xlc must bc repeated somewhat in excess of 8000 times before 

the resulting iterated vectors attain the same degree of approsimation 

to s as is offered 1~~. E.“‘i. 

It is clear from this! example , ant1 from man!’ othrrs for \vhich the 

numerical results are similar, that the \.ector E algorithm is a formidable 

resource of numerical analysis. However, the vector c: algorithm not 

only lacks a rigorous convergence theory (this is true of many methods 

of numerical analysis, and should not wol-ry anyone) but also, at least 

until now, has lacked c~-en the support of a formal theory. The vector 

E algorithm is an analog of the scalar t’ algorithm whose theory is based 

upon a concept, the continued fraction, for which no x,&or equivalent at 

present exists. In the following we begin, at least, to construct the formal 

apparatus of a thcorv of 17ector continued fractions. 

\\Fe begin with a brief review of some known facts concerning continued 

fractions, in particular continued fractions derived from power series. 

The continued fraction 

11x a meaning made clcxr by the notation employed: it is the limit, 

should this exist, of the convergents {C,}, where 

C:, ma>’ be computed b!r a process of successive division and addition 

starting wit11 the partial quotient a,/h,, or more preciscl!. 

CI .=- 11, (Y z I, 2, ), 

whcrc~ 
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D, = bv, 
4-t 

Dt+l = b-t-1 + n @=O,l,..., r- 1). (5) 
t 

Given a power series 

F(2) = 5 2+;3-t-i, 
t=o 

it is formally possible to determine the coefficients {at), {fit> in the continued 
fraction 

UO PO pr-z_ . . . . . . _~ 

I-ao- 1--a,-- A - ay-l - 
(6) 

by imposing the condition that the 7th convergent 

UO PO ~, . . Pr-2 

A-ao- l-al- A- ar_1 

(which is, of course, a rational function of A) of (6) has a series expansion 
in inverse powers of iz which agrees with F(L) as far as the first 2r terms; 
(6) is called the continued fraction associated with F(L) [4, Vol. II, 
Chapt. II]. It is easily shown that this convergent has the form ~,(A)/J!J#) 
where $,(A) and q,(1) are polynomials of degree r and Y - 1, respectively: 

A(4 = i 4,til’, 
t=o 

r-1 

4,@) = c 4t1’ 
t=o 

(r = 0, 1,. . .). (7) 

Thus from the definition of the associated expansion we have 

(8) 

where in general u,,~ # ut (t = 2r, 2r + 1, . . .). For example, we have 

$,(A) = 1 - 2, 41(4 = “01 (9) 

and 

p& 
A(J) 

N ~l,il-~ + u,k2 + terms in 1-3, A-*, . . . . (10) 

The successive convergents {q,(A)/+,(n)} provide a sequence of rational 
functions which approximate the sum or formal sum of F(1). It is a 
remarkable and at the same time extremely important fact that an asso- 
ciated continued fraction often converges far more rapidly than the 
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series from which it is derived, and in certain cases con\.crges e\en when 

the original series diverges. 

Naturally an associated expansion ma!’ formally be derived from the 

delayed power series 

the rth convergent of this expansion may be written as the quotient 

qp)(A)/p,““‘(A) of two polynomials, again of degrees Y and Y ~-~ 1, respec- 

tively. \Ve ha\re, as estensions to Eqs. (9) and (lo), 

and 

q,yn) 

P,‘“W 
- Zl,,,/l -l I I[,), ,A 2 f terms in 29, k”, . 

The quotients (q,““)(~)/~,““)(i)} p _ io\4de a sequence of approximations to 

the sum or formal sum of F,,(A). 

The relationship between the series F(1) and F,,,(A) is clearl!. 

Thus the various expressions 

provide a sequence of approsimations to the sum or formal sum of F(A). 

Multiplying relationships (8) throughout by p,(A), and replacing both 

$,(A) and q,(l) by their expressions (7), we have 

If we examine the coefficients of ii-l, A-2, . , ,I ’ ’ in relationship (12), 

we see that in general 
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Thus the polynomials {p,(A)} f orm an orthogonal system with respect 
to the system of moments {Us} (see, for example, [5, Vol. II, Chapt. Xl), 
in the algebraic sense that the vector (k,,O, k,,r, . . . , K,,) is orthogonal to 
the system of vectors (Us, ur+rr . . . , u,+J (t = 0, 1, . . . , r - 1); the 
polynomials {&)} are the associated orthogonal polynomials. #,‘“)(A) 
is the orthogonal polynomial of order m and degree r; q!“)(A) is its asso- 
ciated orthogonal polynomial. 

3. THE PAIN? TABLE [6] 

Given a power series 

it is formally possible [4, Vol. II, Chapt. VI] to construct a certain double 
sequence pi,j (; = 0, 1, . . . ; j = 0, 1, . . .) of rational functions of ,u. The 
numerator polynomial of pi,i is of the jth degree, the denominator poly- 
nomial of degree i; this quotient is characterized by the property that 
its series expansion in ascending powers of ,u agrees with the series f(p) as 
far as the term in ,L?‘~. Specifically 

pi,j= z;=~~“t~~t~t+t=~+lui,j,t~t (;=O,l,...;i=O,l,...), 
&OXi j*$ '+j 

(13) 

where in general ui,j,t # zct (1 = i + j + 1, i + j + 2, . . .). 

The functions {pi, j} may be set in a two-dimensional array in which 
the suffix i indicates a row number and the second suffix j a column 
number; this is the PadC table. 

It is clear that Eqs. (8) and (13) are effectively formulations of the 
same property; the quotients lying on and above the principal diagonal 
of the PadC table are simply related to the rational expressions of the 
form (11) ; indeed we have 

m-1 
qP’(4 c utiE-‘-’ + A--” @q(q = pp*,m-tr, 

t=n 
pccL = 1 

(7 = 0, 1, . . . ; m = 0, 1, . . .). 

For the sake of completeness we remark that one can derive a rela- 
tionship concerning associated continued fractions and the quotients of 
the lower half of the PadC table. The reciprocal series 
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F*(A) = 5 ?,‘,*A-‘-1 
t--O 

is derived from the series F(i) by means of the formal relationship 

The delayed series 

obtained from F*(A) has an associated continued fraction which \ve denote 

by 

The successiveconvergentsof thisexpansionaredenoted by q,““‘*(il)/fi,‘““*(A) 

(Y = 0, 1,. .). \Ve then have 

(r-O,1 ,... ;m-O,l,... ). 

Use of the series /(,u) leads most dirrctly to the concept of the Pad6 

quotient, and facilitates the most unified presentation of the formal 

theory of the Pad6 table. It must be remarked, however, without quoting 

any special results in detail, that most of the results in the convergence 

theory of the Pad6 table relate to the diagonal sequences. They are in 

essence convergence results in the theory of associated continued fractions 

and depend to a large extent upon classical properties of orthogonal 

polynomials. Thus it transpires that use of series F(A) and F,(A) and 

the consequent formalism is the most suitable for the theoretical investiga- 

tion of the Pad6 table. 

1. THE EPSILOK ALGORITHM 17, 

The rational functions (11) and indeed the whole of the Pad6 table 

may be constructed with the help of a verv simple recursive process. 

In the first case, we have [Xi 
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LEMMA 1. If fulzctions E!“‘) (r = 0, 1, . . . ; m = 0, 1, . . . ) are constructed 

by application of the relationships 

EL?)1 = et;;u + (e*(m+l) _ @')-1 (14) 

with r = 0, 1, . . . ; m = 0, 1, . . . to the initial values 

m-1 

@j=O (m=1,2,...), fzJrn) = tz 21,1-‘-* (m = 0, 1, . . .), 

then 

m-1 

E$ = tz uJ-f-1 + 1-m $q# (Y = 0, 1, . . .; m = 0, 1, . . .) 

In the second case we have [9] 

LEMMA 2. If functionss!“‘) (r = 0, 1, . . . ; m = - (r+2) - 1, - (rf2), . . .) 

are constructed by application of the relationships (14) with 7 = 0, 1, . . . ; 
m= - (r-22) - 1, - (rf2),... to the initial values 

e(_ml) = 0 (m = 0, 1, . . .), ~~;~--l)=0 (m=O,l,...), 

,“W = m c WCC (m = 0, 1, . . .), 
t=o 

then 

49 = Pr,m-tr (7 = 0, 1, . . . ; m = - 7, - 7 + 1,. . .). 

For the sake of clarity, we point out that for fixed Y the functions 
EL:) (m= -Y, -rf l,...) 1’ ie in a column of the E array, and the 
functions P,,~+~ lie in a row of the Pad6 table. 

The equations of Lemmas 1 and 2 may be interpreted in two ways. 
First, they may be considered to represent relationships between rational 
functions : Eq. (14) is in this case a prescription for constructing the 
coefficients in the numerator and denominator of such a function. Second, 
the value of the variable il or y may be considered to be fixed; Eq. (14) 
is then an arithmetic relationship and may be used recursively to compute 
the values of the above-mentioned rational functions. 

If two neighboring members, s!‘@+‘) and E!“‘), of the E array are equal, 
then the E algorithm breaks down in the sense that a sector of the E array 
cannot be constructed (if .s,(‘“+‘) and E!“‘) are both infinite this sector has 
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its vertex at ay:‘i ; otherwise at F~;;“). Certain singular ~-tiles enabling 

this breakdown to be repaired have been devised [IO!. In the first of th(a 

implementations described in the preceding paragraph, breakdown O(XYI~S 

when e,“’ + ‘1 and E!**’ represent identically equal rational function- ; in 

the second implementation, breakdown occurs when numerical \~dues 

of F,@ i) and Ed are fortuitously equal. For the sake of c~ompletcne~s 

we mention that if certain assumptions concerning the {z/J arc’ made, 

then breakdown in the first implementation cannot occur, and that if 

additional restrictions are iml’oscd upon 1 or ,A, breakdown in the ~con~l 

implementation is also impossible. 

In practice, the t‘ algorithm provides a \-cry’ effective convergenc’cs 

acceleration technique. Given a slowly convergent or divergent sccluc~ncr~ 

{S,,,}, relationships (14) arc applied to the initial values 

p’/ =-~ () (191 I,“,. .). co(“‘) --- s,,, (VI ~- 0, I, ) ; 

it is a fact of computational experience that a derived quantity 6::) often 

approsimates the limit or formal limit of the original sequence far more 

accurately than do the members of the sequence from which .$’ is derived. 

The use of this acceleration technique may be given :I theoretical justifica- 

tion by selecting a variable ii and thus determining ;I set of corffic+ent,< 

{U,} such that 

the convergence acceleration properties of the E algorithm ma!. then, 

in any given case, be based on the theory of continued fractions. 

The results of Lemmas 1 and 2 were first pro\ed b\r a direct appeal 

to determinantal expressions for the functions involved; however, ;I 

purely constructive proof has recently been given. It belongs to thcx 

domain of classical theory that the coefficients {cQ@)}, (p,‘“)} of the various 

associated expansions, and also the polynomials {$,‘“‘(A)), {g,““‘(i.)}, can be 

constructed by means of simple recursive algorithms ~11, 12 1. It was the 

service of Ii. L. Rauer [13] to reveal the existence of a bridge of algorithms 

stretching from these classical recursions to the E algorithm; each 

algorithm is constructed from its predecessor by direct substitution and 

simple manipulations; the theory of determinants can wholly be dispensed 

with. The existence of this constructive proof was a crucial factor in later 

developments which we shall shortly describe. 
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5. NONCOMMUTATIVE CONTINUED FRACTIONS 

Recently [14] an extensive theory of noncommutative continued 

fractions has been developed: this has led to the establishment of a 

noncommutative version of the quotient-difference algorithm, to a theory 

of noncommutative orthogonal polynomials, to an extension of the theory 

of the E algorithm which concerns quantities satisfying a noncommutative 

law of multiplication, and finally to the concept of what may with complete 

propriety be called an operator-valued PadC table. 

It is assumed that the coefficients of the continued fractions, the 

convergents, and indeed all the auxiliary objects which occur in the 

theory are elements of a division ring X2: the elements N,,, N,, N,, . . . 

of R satisfy the following assumptions: 

(1) Addition is commutative and associative: for every pair Ni, Ni E % 

there exists an element N, such that 

N,+Ni=N,+Ni=N,; 

furthermore for every trio N,, N,, N, E FJ1 

(N, + NJ + Nf = N, + (N, + NJ. 

(2) Multiplication is associative, distributive, and in general non- 

commutative: for every pair Ni, Nj E 8 there exists an element N, E % 

such that 

NzNi = N, ; 

furthermore for every trio N,, N,, Nt E ‘8 

also 

N,(N, + NJ = N,N, + NJ,; 

in general 

N,Nj # NjNi. 

(3) There exists a subset of scalars G E ‘% which in themselves constitute 

a field ; for every Ni E 6 and Nj E % 
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NiNi = N?N,; 

in particular I and 0 are the unit and zero elements respectively of 6. 

(4) There exists a subset g of % of invertible elements; to ever! 

element NE ‘p there corresponds an element N-l E Cp for which 

NN-1 = N-IN = I. 

If the coefficients of a continued fraction satisfy a noncommutative 

law of multiplication, then it is essential to specify the order 

multiplication by the inverse takes place in relationships of 

(5). Two systems of continued fractions have been studied: 

continued fraction 

4 A? . . . Air . . . 
B, + B, + & + I 

has successive convergents {preCv} given by 

/WC = D,’ (7 = 1,2,. .), 

where 

D,’ = B,, D;.+, = B,_t_l + D,‘-lA,_, (t = 0, 1) . . , Y 

the post-continued fraction has successive convergents {postCV} 

&$ = D,“, 

where 

DO” = B,, D;ll = B,_,_l + A,_-IDI”-l (t = 0, 1, . . . ( Y 

in which 

the form 

The pre- 

- I); 

given by 

- I). 

In general both the value and the successive convergents of the five- 

continued fraction with coefficients {A,}, {B,} differ from those of the 

post-continued fraction with the same coefficients. For example, 

It has been possible to develop the theory of continued fractions of 

both systems associated with a power series ~,~o L~,l-‘-l whose argument 

1 is scalar and whose coefficients {UJ obey a noncommutative law of 

multiplication ; the coefficients of the continued fractions of the two 

systems, derived from the same power series, in general differ. 
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It has also been possible to develop the theory of two systems of 
orthogonal polynomials {p,eP!m)(l)}, {,,$‘,@“(A)} and their associated 
orthogonal polynomials {P,,Q!“‘)(A)}, {,,Q!““(A)} derived from a set of 
moments (Ut} which obey a noncommutative law of multiplication. The 
polynomials of the two systems are characterized by the property that 
the power series expansions of the quotients ,p,(‘“)(A)-1 +,,&!“‘)(A) and 

,,,Q!"“@) pd"!"'W g a ree with the series c&, UJ-‘-’ as far as the 
first 27 terms. The coefficients in the polynomials of the two systems 
differ: for example, 

,,Br’“‘@) = 3, - IJm+rIJnr-r, ,,,Qt“'(4 = U WV 

pos$yrn)(4 = Jl - u#$-lum+p fiostQ?‘)(4 = U . In, 
by chance, due to their simple construction p,cQl@“)(A) and ,,Q,@+‘)(A) are 
equal; but such an equivalence ceases to hold for polynomials of higher 
order. The reader will easily verify that 

p,J’r(m)(iZ)-l pVcQl(m’(A) -U,,J-l + U,+,k2 + terms in A-“, j2-4, . . . 
(16) 

postQl(m)(jl) posPl(m)(jZ)-l - U,A-l + U,,,+,1-2 + terms in 1-8, A-4, . . . . 

It is possible to construct noncommutative versions both of the classical 
systems of recursions occurring in the theory of scalar associated continued 
fractions, and of Bauer’s bridge leading from these recursions to the 
E algorithm. 

The relationships of the E algorithm do not involve multiplication, 
of either the pre or post kind; thus, starting with differing initial conditions, 
and proceeding through differing systems of recursions, the theories of 
the associated continued fractions of the two systems culminate in an 
algorithm, the E algorithm, which is common to both. 

The end product of this formal theory is the following [14]: 

LEMMA 3. If the relationshi@ 

E;“:, = E!“;l, + (E,@+l) _ E;'"')-1 
(16) 

with r = 0, 1, . . . ; m = 0, 1, . . . can be ajq!Ged to the initial conditions 

m-l 

I$“]=0 (m=1,2,...), EJrn) = tz U,il-‘-’ (m = 0, 1, . . .), (17) 

where U,E% (t=O,l,...) and 3, is scalar, to produce o$erator-valued 

rational functions {E,@“)}, then 
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(v L- 0, 1, ; JJL : 0, 1, . . .) ; 

if relationshi@ (16) caqa be applied to the same initial cwlditiom (l’i), thm 

Since both the initial conditions (17) and the form of the c‘ algorithm 

relationships (16) are the same for the two systems of continued fractions, 

we hat-c by equating expressions (18) anti (19) 

If the reader cares to examine expressions (15) in detail, he will find that 

they are both equal to (AU,,,-l ~ I’,-llT,,l ,k.,,--l)- I. 

Xlthough the orthogonal and associated orthogonal polynomials found 

by considering conditions of fire-orthogonality and frost-orthogonality form 

quite distinct systems, their quotients, as indicated 1,~. El. (20), are 

identical. 

In the contest of ascending power series, we have 114i 

1,1sn1n1.\ 4. If the relatiomhiix (16), with Y ~~ 0, 1, . : JJL =- ~~ (Y -1-L)) ~~ 1, 

(Y-k?), . . .) can he a&%ied to the initial wlm~s 

Et”‘{ = 0 (nz = 0, 1, . j, Ei,,,“’ I’ (m =: 0, I , . . . j, 

where l;, E % (t =:- 0, 1, . . .) and ,u is scalar, to fwoduce operator valued 

rutional functions {E!“)), then 



VECTOR CONTINUED FRACTIONS 371 

There is no question of having a pre- or post-Pad& table: the operator 
valued PadC table is unique. 

It should be emphasized that all of the formal theory of operator 
valued continued fractions has been established by the consistent use of 
nonlinear recursions, and simple manipulations involving the operators 
related by these recursions. Although the concept of a determinant with 
noncommutatively multiplying elements has been introduced (for example, 
see [16-221; for related matters, see [23-29]), the higher flights of the 
theory of such determinants have not been ventured upon; it was thus 
impossible, when constructing the theory of the operator valued Pade 
table, to adapt the many determinantal results in the theory of scalar 
continued fractions; whether analogs of these determinantal results can 
in fact be constructed is a matter awaiting investigation. 

Again, just as in the scalar case, the operator E algorithm provides a 
powerful acceleration technique for, for example, a square matrix sequence 
{S,} (such as occurs in the iterative treatment of a partial differential 
equation whose solution is required at points lying on a square grid). 
Relationships (16) with r = 0, 1, . . . ; m = 0, 1, . . . , are applied to the 
initial values 

Eyi=O (m=1,2 ) >... > E~“)=S, (m=O,l,...); (22) 

a transformed matrix is often a substantially better approximation to 
the limit or formal limit of ($4,) than any of the original matrices from 
which it is derived. 

6. THE VECTOR EPSILON ALGORITHM 

Although the convergence acceleration properties of the operator F 
algorithm are indeed remarkable, it must be stated that its scope of 
application is severely limited (the algorithm in this form deals only with 
square matrices and other arrays of a similarly restricted form) ; further- 
more this acceleration procedure is computationally very expensive, in 
view of the matrix inversion involved at each stage of the calculations. 
A substantial increase in the effectiveness of the E algorithm resulted 
from a suggestion of Prof. K. Samelson that use should be made of the 
vector inverse described in the introduction: the inverse z-l of the 
vector z of Eq. (2) is given by Eq. (3). 

We remark parenthetically concerning this definition that it is an 
eminently reasonable interpretation of the inverse of a vector. If the 
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vector has but one component, then z-l reduces to the reciprocal of the 

complex number z. If z has three real components :x, J!, 2 then Cl. (3) 

gives 

this is the birational transformation of Cremona [30]. More generally 

z-r is the inverse point of z with respect to the unit sphere in n dimensions. 

Finally it m-&y be shown that z-l is the transpose of the generalized inverse 

of a rectangular matrix of Moore [31] and Penrose j32 /. 

From the viewpoint of application, we remark first that any array. 

of numbers occurring in practical numerical analysis can be mapped 

onto a vector, and second that the computational cost of using vector 

inversion is relatively low. 

This vector inverse was incorporated into the E algorithm relationships 

in a manner described and illustrated in the introduction; after a number 

of successful numerical experiments, the \.rctor F algorithm became 

established as an acceleration technique of general application and great 

power. 

It proved to be extremely difficult to establish a mathematical theory 

of the vector E algorithm; the root of the difficulties appears to lie in 

the simple fact that vectors are not closed with respect to multiplication. 

Unsuccessful attempts were made both to derive a direct representation 

of the vectors {E!~)} in terms of the vectors (s,~} from which they are 

derived, and to relate the vectors {E!“‘)} to vectors produced by other 

recursive schemes. Clearly an oblique approach to this theory was called 

for. 

As a result of a series of numerical esperiments, and of theoretical 

investigations concerning vector sequences of certain special types, the 

author was led to propose the following conjecture [33] : if n-dimensional 

corn&esvalued vectors (E?‘> can be constructed b>J means of the relationships 

(3) from the initial values (1) and an irreducible linear recursion 

i CA, + 1 = g, Ct s 
i j 

(m = O,l,. .) 
t=n 

(where the {cl} aye complex numbers independent of 

n-dimelzsional complex-valued electors) prevails among 

identically 

m, and the (No} are 

the sectors {s,,), thell 
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It may appear to the reader that this conjecture is the sort of result 

that can be settled one way or the other without much trouble, but 

although it has been generally known in mathematical circles for some 

time it still remains to be proven in its full generality. As is the case with 

most mathematical conjectures, the end result is not especially significant; 

the importance of the conjecture lies in the mathematical theory which 

must be constructed for its proof. 

7. McLEOD’S ISOMORPHISM 

A fundamental breakthrough to a proof of the above conjecture in 

the case which the (ct} are real numbers was made by J. B. McLeod [34]. 

It can be shown that a version of the above result is true if the (8,) and 

s are replaced by square matrices; if therefore it is possible to induce 

an isomorphism between real n-dimensional vectors z and certain matrices 

Z (we write z +-+ Z) such that sums, differences, and inverses of vectors 

correspond to sums, differences, and inverses of associated matrices, then 

a complete isomorphism is thereby induced between vector and matrix 

E arrays: if the vector E array is constructed from the vector sequence 

{s,}, and a matrix E array from a matrix sequence (S,,,}, and furthermore 

s%t-’ S, (m = 0, 1,. . .), then a!‘“)++ E!“‘) (r = 0, 1, . . . ; m = 0, 1,. . .); 

the special case of the conjecture is proved. 

Although the vector-matrix isomorphism of the preceding paragraph 

was introduced to prove a special conjecture, we see immediately that 

in a wider context it enables the general theory of the matrix E algorithm 

to be mapped onto the theory of the vector E algorithm. 

A vector-matrix isomorphism of the required sort was determined by 

McLeod: he constructed a set of 2” x 2” matrices {r,‘“)} which satisfy 

the relationships 

Jy* = 1 @=1,2 )...) n), 
(23) 

rt(n)rl,@) + rt,(*)rt(n) = 0 (t = 1,2,. ..,12-l;t’=t+l,t+2 )...) 12); 

the isomorphism between a real vector z of Eq. (2) and its associated 

matrix Z is given by 

z = 2 zfrf(n) 
f=l 

Clearly if z’ and z” are two real n-dimensional vectors of the form (2), 

and their companion matrices in the sense of Eq. (24) are Z’ and Z”, 
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respectively, then 

Furthermore, WC obtain from Eq. (24) 

or, using the definition of lilcl. (3) with real \d_~es of the components, 

thus the isomorphism has the properties ascribed to it. 

McLeod actually constructed a set of matrices which satisf!. the requirt4 

relationships. They are real and of dimension Y >c 2”; we denote the 

dt x 2’ matrix of zeros by O@) and the 2’ x 2l unit matrix b!r I(‘) ; McLeod’s 

representation is then as follows: If WC write 

then each matrix M,(“) 1s obtained from its prrdcccssor RI)‘“‘, I,!. replacing 

the matrix O(“~-tT ‘I bv the matrix 

and annihilating the remaining elements. It is t3sily verified that these 

matrices satisfy Eys. (23). 
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8. THE CLIFFORD ALGEBRA 

For the sake of completeness we remark that numbers given by a 
relationship of the form (24) with scalar coefficients, in conjunction with 
Eqs. (23), are known as Clifford numbers [35] (see, for example, [36, 371). 
They occur in quantum theory [38, 391 and in particular in Dirac’s theory 
of electron spin [40, 411; they are also extensively employed in the 
algebraic theory of spinors [42]. 

A number of representations of the {I’,‘“)) have been given; we mention 
the Cartan matrices [43] for the case n = 3, and the Dirac matrices for 
the case n = 4. Further work on the subject has been carried out by 
Eddington [44] and Newman [45]. Cartan [46] obtained representations 
for general positive integer values of 12 in terms of tensor products of 
Cartan matrices. 

Hurwitz [47] gave a general theory of real matrices which satisfy 
relationships (23) for arbitrary positive integer values of n; McLeod’s 
matrices are subsumed within this scheme. 

9. A FURTHER SYSTEM OF ANTICOMMUTING MATRICES 

Although the introduction of the Hurwitz-McLeod matrices was a 
crucial step in establishing the theory of the vector E algorithm, with 
regard to further developments they suffer from two disadvantages. 
First, the isomorphism (24), as described, relates only to real-valued 
vectors. Second, the law of formation of any one of the matrices changes 
as n is replaced by s + 1; for example, the position of the nonzero 
element in the first row of Ml@) moves as n is increased; this is particularly 
unfortunate when we come to consider-vectors with an infinite number 
of components. 

. . 

As we shall see later, the first difficulty is easily disposed of. With 
regard to the second, the suggestion naturally prompts itself that if we 
put the zeros and units in other places, the individual matrix corresponding 
to a fixed component might, in a way which can be exploited, retain its 
structure. This suggestion proves to be a fruitful one, and as a preliminary 
we introduce 

THEOREM 1. Denote the 2’ x 2’ matrix with units along the @incifial 

backward diagonal and zeros elsewhere by I(‘). The set of r matrices K,(‘) 

(t = 1, 2,. . .) r), each of dimension 2* x 2’, is defined reca&vely as follows: 
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i 

@r-r) j(r--l) 
K,c’) = icy- Ii O(’ 1) 

(Y -== 2, 3, . . .); 
/- 

they satisfy the relationships 

K (I)’ _ _ I(+‘1 
1 - (L-1,2 )..., Y), 

(25) 
K (‘)K,,(‘) 

t 
+ &,“,K (I) = 0”’ 

t (t= 1,2 ,..., Y- l,f-t-j- 1,t+2 ,...) 7). 

P’rooj. The proof follows by induction. \Ve easilv verify that 

and also that 

K,(‘)i(‘) = _ I”‘l’K (11 
1 (27) 

lvow assume that Eqs. (24) are true with Y replaced by Y - 1, and in 

addition that 

K (I -I)$-? _ _ i(Y-I)q(v -1) 
t (L=:l,S )..., r-l). 

We then have 

(t = 1, 2, . . . , Y -- I), 

1”‘. 

and also, trivially, 

K (“1’ _ 
r - 

Furthermore 
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and in addition 

K,(‘)Kf(‘) + K,cl)K,c’) 

(p-1) K,(*-‘)f+l, + I”(‘-1,&t”-1, 
= 

- &(*-l)j(‘-1, _ +l)&(‘-1) (p-1) 

@=1,2 )..., r-l). 

Finally 

Kr(‘)I”(‘) = 
(p-1) Kt(*-‘) i@-1, 

Kt(‘-1) “I(,-1) 0(-l) 
@=1,2 ,...) r-l), 

- ( 
I+1) 0(-l) 

WI(‘) = O(,-1) _ I(v-l) ; 

it’)Kt(*) = 
0 ]T-‘,Kt(‘-l, 

i+‘)@‘-1) 0 
@=1,2 )...) r-l), 

ib)jp = 
i 

- 
1(-l) Oh1) 

1 (p-1) p-1) . 

Thus if formulas (25) are correct for the set of matrices with superscript 
r - 1, they are also true for the set with superscript r; it follows immediate- 
ly from Eqs. (26) and (27) that they are generally true. 

It is now a simple matter to construct sets of matrices satisfying 
Eqs. (23); two such are given in 

THEOREM 2. The matrices 

and 

rttn) = i&b”) @=1,2,...,rt) 

rtin) = Kl(n’+1)@&1+1) (t = 1,2, . . . , ?z), 

where n’ > n in both cases, satisfy Eqs. (23). 

(28) 

(29) 

The proof of this theorem is trivial. The matrices of Eqs. (28) are 
purely imaginary, those of Eqs. (29) are purely real; the matrices of the 
first set are perhaps the simpler, and we make use of them in the sequel. 
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14’~ now turn to the first of the difficulties mentioned earlier; \ve must 

devise an isomorphism between \.ectors and matrices which adumbrates 

the inversion of vectors with comples components. 

In order to distinguish the real and imaginary parts of the components 

of the given vector z, VT let z +-> % with 

where in the notation of El. (2) 

is the matrix isomorphic to the complex conjugate vector, then, from the 

definition of a vector invxrsc, 

and if the isomorphism between vectors and matrices is to be preserved 

during inversion, we must ha\:< 

or 

Actual multiplication yields 
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If Eqs. (32) and (33) are to be equivalent, we must have identically 

x,2 = I (t=1,2 )...) n), 

X&t + X,)X, = 0 (t = 1,2,. . .) Tz-l;t’=t+l,t+2 )...) n), 

X,Y,, = Y,,X, (t=1,2 ,..., n;t’=1,2 ),.., n), (34) 

Yt2 = - 1 (t=1,2 )..., rz), 

Y,Y,, $- YpY, = 0 (t = 1,2, . ..,n.-l;t’=t+l,t+2 )...) n). 

There are many ways of constructing the required set of matrices; 
perhaps the simplest is described in 

THEOREMS. Ifrt(nl’(t= 1,2,..., +z’; n’ Q3 2n + 1) constitutes a set of 

matrices obeying Eqs. (23), then the set 

x, = rp” 

yt = qw)~w) 
(t = 1,2, . . . , n) 

2t+1 

obeys Eqs. (34). 

(35) 

11. THE VECTOR-VALUED PADI? TABLE 

In the further development of the theory of vector continued fractions, 
we are particularly anxious to ensure that vector inversion is a reflexive 
process ; we wish to consider vectors z of such a class, that with the 
single exception of the zero vector 

(z-i)-’ = z. 

Clearly all finite vectors of finite dimension belong’to the required 
class. However, if the vector 

z = (z,, z2, . . . ) 

has an infinite number of components, then we must have 

(36) 

we restrict our attention, that is to say, to L, vectors. 
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We must now consider matrices Z, given by an equation of the form 

(30), which are of infinite dimension, either because the corresponding 

vector z is of infinite dimension or because the generator matrices X,, Yt 

(t = 1, 2, . . .) n) have been chosen to be of infinite dimension. In a 

general context the inversion of infinite matrices is beset by questions of 

uniqueness. However, in our case the matrices Z which we consider are 

so sparse that such questions hardly arise; it is easy to verify that subject 

to condition (3~7, Z-l (as defined by Eq. (31) with n finite or infinite 

depending on the nature of z) is both a left-hand and a right-hand inverse 

of %; 25-l is thus uniquely determined not only by Eq. (30) but also 

in the sense of matrix inversion. 

We wish now to remark that the inverse of a nonzero L, vector is 

also an L, vector and, as is well known, the sum and difference of two 

such vectors are also L, vectors. The vector E algorithm employs vector 

addition, subtraction, and inversion; thus if one excludes the possibility 

that one is called upon to invert a vector which is identically zero, it 

follows that if the initial vectors from which the c: array is built up arc 

all L, vectors, then the E array itself is composed of such vectors. 

\I’e recapitulate the results of the preceding paragraphs in 

THEOREM 4. The sequence (ut> o/ complex-valued L, vectors is given. 

The F arra?) of vector-valued rational functions {F,(‘@} (7 = 0, 1, . . . ; m = 

-(7{2) - I, - (7+2),...) can formally be constrwted from the initial 

values 

s?{ = 0 (m = 0, 1,. . .), &J--l)=0 (m-0,1,...), 

1H 

f0 
(nl) - 

~- z, w’ (m = 0, 1,. . .), 

by use of the relationships (4) with 7 = 0, 1, . . . ; m = - (7 f 2) - 1, 

- (7 + 2), . . . . The only reason for which the formation of the E arra_v 

can break down is that fortuitously one 07 moye vertical pairs of E vectors 

(for example, E? +I) and E!“‘) aye equal. For those sectors of the vector R 

array which can be constructed, the resulting vectors {E!~)} are L, vectors. 

The coefficients {ul} ma>! be translated into matrix eqztivale& 

I;, w 11/ (t = 0, 1, . . .) (37) 

accordilzg to an isomorphism of the jorm (29) ; the E array* of matrix-valued 

rational functions Ej”) (7=O,l,...;m=-(7+2)-l,-(7!2),...) 
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can formally be constructed from the initial values (21) by use of tlte rela- 

tionshifis (16) with r = 0, 1, . . . ;m=-((rf2)-l,-((rf2),....Those 
sectors of the matrix E array which can be constructed correspond completely 

to those sectors of the vector E array which can be constructed; furthermore 

in these sectors and according to the selected isomorphism 

e;“’ t--) E;“‘. (33) 

Again the equations of this theorem may be regarded in two lights. 
First, they may be considered to represent relationships between vector- 
and matrix-valued rational functions in which ,u occurs as a variable; 
second, the value of y may be considered to be fixed: Eqs. (4) and (16) 
then concern the numerical values of vectors and matrices respectively. 

Theorem 4 may be given an alternative interpretation: the sequence 
(8,) of complex-valued L, vectors is given. The E array of complex-valued 
vectors {B!~)} can formally be constructed from the initial values (1) by 
use of relationships (4) with r = 0, 1, . . . ; m = 0, 1, . . . . Again the only 
reason for breakdown of the E algorithm is the presence of equal vertical 
pairs of E vectors. In those sectors of the E array which can be constructed 
the resulting vectors {B!~)} belong to the class L,. The vectors {s,,,} may 
be translated into matrix equivalents {S,} according to an isomorphism 
of the form (30). The E array of matrices {E!“)} can formally be constructed 
from the initial values (22) by use of the relationships (16) again with 
r = 0, 1, . . . ; m = 0, 1, . . . . Again the sector of the vector and matrix E 

arrays which can be constructed correspond, and in these sectors Eq. (38) 
holds. 

It is this interpretation which finally absolves the vector E algorithm 
from any suspicion of being a mere adventitious computational trick, and 
offers a perfectly secure interpretation of the vector E array. We may 
regard any given sequence {s,} as being the successive partial sums of 
a vector series according to the formula 

where p is any fixed, finite, nonzero real number. The even order trans- 
formed vectors {$J‘)} are isomorphic to the matrix-valued Pad& quotients 
derived from the series crzo Utp’, where Eq. (37) holds. The convergence 
properties of the vectors {ai:)} may be deduced from the convergence 
theory of operator-valued continued fractions. We may speak of the even 
order vector E array as being a vector-valued PadC table. 
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12. G NUMBERS 

Clifford numbers are not, in general, elements of a binary algebra: 

although both Z and Z’ may be Clifford numbers, the product ZZ’ is not. 

Nevertheless Clifford numbers possess certain interesting formal properties ; 

for example, it may be shown that such combinations as ZZ’Z and ZZ’Z” -L 

Z”Z’Z are in fact Clifford numbers. We are able to extend these results 

to our representations of vectors with complex coefficients. 

In order to present the inquiry in the most general terms, we introduce 

DEFINITION 1. A number 01 the form 

G = 2 x,x, + 2 ytY,, 
t-- I /=I 

(39, 

where the numbers {X,} and {Yl} satisfy the equations 

x,2 = I (t = 1, 2, . . ) a), 

x,x,, + X,)X, = 0 (t = 1,2,. . .) ?z-l;t’=t~-l,t+:! ,..., !I), 

X,Y,, = Y,,X, (t=1,2 )...) n;t’=l,d ,..., ?2’), (a(‘) 

y,2- -I (t-1,2 )...) n’), 

Y,Y,? + Y,,Y, = 0 (t=1,2 )...) n-l;t’=t+l,l+P )..., II’) 

and the coefficients {xt} ad {yl} are real or romjdex nzsmbers ior which 

is called a G number; we write 

if the numbers G, G’, G:“, . . . all have representations of the form (39) 

subject to the conditions (40) in which the numbers {X,}, {Y,} are the same, then 

we write G, G’, G”, . . . e 8. 

The matrices Z of Eq. (30) are special cases of G numbers. \I:e denote 

the number conjugate to G b\ 
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Clearly G, GE 6. 

t=1 I=1 

The results of this section are based on the fundamental 

THEOREM 5. If G, 6’ E 6 with coefficients {x$}, {yl} and (~~‘1, {JJ~‘}, 

respectively, then 

{G, G’} = GG’ + G’G, (42) 

( 
n’ 

= 2 2 x,q + 2 Yt_Yt’ I. 
t=1 t=1 1 (43) 

Proof. This result is easily verified by direct substitution of expressions 

of the form (39), together with their conjugate expressions, into formula 

(42), and use of Eqs. (40). 

DEFINITION 2. If G, 6’ E 6, and in the notation of Eq. (43) 

then we write G 1 G’. 

Clearly perpendicularity 

then 6’ 1 G. 

(6, G’} = 0, 

as we have defined it is reflexive: if G _L G’, 

We can now proceed to 

THEOREM 6. If G, G’ E 0, then GG’G E 8 ; specifically 

GG’G = (6, i’}G - ((G))k. (44) 

Proof. We write 

GG’G = G(G’G + GG’) - GGG”’ 

and Eq. (44) follows immediately. 

COROLLARY. If 6’ J_ G then 

66’6 = - ((G))& 
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THEOREM 7. If 0, G’, G” E 8, then GG'G" + G"G'G E 8; specificull~~ 

(J(:‘Q” + G”G’G = {a’, ij”}G + {G’, &}G” - {G;, (y}$. (45) 

Proof. We write 

(A”G’G = (+“(G’G + i;,&) _ G;“&’ 

and have 

(:(:‘(i” + G"G'G = G(G;‘G” + ,+i’) + c,“(c,‘(; + &) 

which reduces to Eq. (45). 

COROLLARY. If 6 1 G’, G 1 G”, 6’ _L &“, then 

GG’G” + G”G’G = 0. 

There are a number of indications that the elementary results concern- 

ing G numbers which we have just derived have fundamental application 

to the theory underlying the vector-valued Pad& table. 

For example, we may easily show that 

= (U,-1A - u,ti-w, _,_, u,-1) -1. 

If I-y, and U,,, , , are G numbers, then so are U,-l and (from Theorem 6) 

I-W-lI-Wl _ ,IT,,,pl. Thus we have been able to express the first convergent 

of the G number continued fraction associated with a G number coefficient 

power series solely in terms of G numbers or, taking a special case, solel! 

in terms of vectors. 

Although the convergents of the associated continued fraction derived 

from a G-number coefficient power series are of course G numbers, their 

coefficients are not. It is an interesting speculation and would be a 

substantial achievement in the theory of vector continued fractions if 

the auxiliary theory of operator continued fractions derived from power 

series could be so versed as to consist solely of such expressions as are 
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encountered in Theorems 6 and 7; when this theory is restricted to power 

series whose coefficients are matrices isomorphic to vectors it would then 

transpire that the formalism of the vector-valued Pad& table can entirely 

be expressed in terms of vectors, and not in terms of a mixture of matrices 

and vectors as is the case at the moment. 

We conclude this section by showing that in general a G number 

satisfies a quartic equation with scalar coefficients. 

THEOREM 8. Let G be a G number givelz by Eq. (39), and write 

n 

x2 = 2 x12, y2 = gyt2. 
t=1 t=1 

(1) If n = 0, G satisfies the quadratic equation 

(46) 

G2+y21= 0; 

(2) If n’ = 0, G satisfies 

G2-- A= 0; 

(3) If nn’ # 0, then G satisfies the qwartic equation 

G4 - 2(x2 - ys)G2 + (x2 + Y~)~I = 0. 

(47) 

(48) 

(49) 

Proof. The proofs of the first two parts of the theorem are trivial. 

To prove the third, we write 

so that 

x = i: qt, 
t=1 f=l 

G=X+Y 

and 

We then have 

x2 = x21, Y2 = - y21, 

XY=YX. 

G2 = (x2 - y2)1 + 2XY 

64 = {(z” - y2)2 - 4x2y2}I + 4(x2 - y2)XY, 

and by eliminating the number XY, we obtain Eq. (49). 
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13. H MATRICES AND SOME RESULTS COh-CEIINING YOKMS 

In this section we consider a specific representation of G numbers. 

Concerning the spectrum of an H matrix, WC have 

THEOREM 9. .u and _v hare the meanings attached to them in Eqs. (46). 

(a) If, in the notation of Eq. (51), Y < w, then if either 12 == 0 OY n’ = 0, 

H has two eigenvalues (in the first case + i_v, iu the second _+ s) each of 

multiplicity 2’~ ’ ; if nn’ f 0, H has few eigen~lalues + .Y :_ i?f, each of 

matlti@licity 2’ ‘. 

(b) If Y = co then the infi&te matrix H has a point sfiectrzlm. Ij either 

II = 0 or n’ = 0, then there are two such points, in the first case _I: iy and 

in the second -+ M; if nn’ # 0, then there aye jaw SM-h fioints fr .Y + iy. 

Proof. It follows from Eqs. (47-49) that the spectrum of H is limited 

to the points mentioned. Concerning the multiplicities of the eigcnvalues, 

we remark first that each eigenvalue of H is a continuous function of each 

member of the sets {xt}, {y,}, and second that it is easy to verifv that for 

finite Y, the matrix H1(“’ has two eigenvalues f_ i each of multiplicit? 

12~ ‘, and that for infinite Y, K, (I) has a two-point spectrum 2 i. The 

theorem then follows. 

1l.e now derive a result concerning the structure of H matrices: 

THEOREM 10. Accompanied oj u factor of * i or + 1, each element 

of the sets {xI}, {_ ,> v occ~ws once and on131 owe in each row and in each colwm~ 

of the H matrix (50). 
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Proof. We examine the matrices {K,"'} occurring in Eq. (28). 
For a fixed t the matrix K,(') (1 < t < Y) has one and only one nonzero 

element in every row and also in every column; moreover, if K,(') has 
a nonzero element in a certain position, then the elements in this position 
in all other matrices belonging to the set {K,(')} (r being fixed) are all 
zero. Furthermore premultiplication of a suitable matrix by I’/) is 
equivalent to an interchange of the first and second rows, the third and 
fourth rows, and so on, together with the scalar multiplication of certain 
of these rows by + i, and of the others by - i. The result contained in 
the theorem then follows by considering the linear combination (50). 

Our third result in this section concerns the conjugate matrix k. 

THEOREM 11. If the coefficients {xt} and {y,) are real numbers, then 

l&II*, 

where the a&risk denotes a complex conjugate transpose. 

Proof. In the representation of Eq. (50), the matrices {X,> are purely 
imaginary and the (YJ are purely real. Transposing any matrix X, or Yt 
defined by Eqs. (51) about its principal diagonal is equivalent to multiplica- 
tion throughout by - 1. Replacing i by - i changes the sign of each 
element of X, and leaves the elements of Y, unaltered. The result of the 
theorem follows immediately. 

We conclude by deriving some results concerning the norms of H 

matrices. 

It will be recalled that in practice use is made of three principal vector 
norms (see, for example, [49]): if 

is a typical vector with complex components, the norms in question are 
defined by 

IlVlll = f$ M’ (52) 

II% = {z Iq~ (53) 

IIVII~ = 
k::“,m ‘vtl* 
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is a typical m x w matrix of complex numbers, then three matrix norms 

which are compatible with these vector norms, in the sense that li.Avli < 

IIAII l/v/I* are 

(54) 

/ IA j I2 = (maximum eigenvalue of AA*)““, 

respectively. A fourth matrix norm, the Euclidean or Schur norm, defined 

by 

may be used to replace the /iA II2 norm in the above scheme, but its 

numerical value can in fact be larger than that of ‘IA ~ ~2 by a factor m’;‘; 

indeed we have 

Our study of the structure and properties of H matrices has been 

sufficiently extensive to enable LIS to give a comprehensive account of 

their norms : 

THEOREM 12. In the notation of Eys. (50) and (54)-(58) 

(ii 7 is infilzite, i.e., H is an &finite matrix, then unless all coefficients 

{Gr (yJ are zero, i IHI lE is necessarily infinite). If we introduce the additional 

restriction that the coefficients {xt}, {y,} should be real, then ilz the notation 

uf Eqs. (46) 

/lHllz = (x2 + y2)‘:‘; 
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ficrthermore, if r is finite, then 

II% = mliZI M2* 

where m = 2’+l. 

Proof. The above results can readily be verified by an appeal to 

Theorems 10 and 11, and use of Eqs. (64)-(68). 

We conclude by recording some curious relationships between the 

norms of vectors and those of their companion matrices as given by the 

isomorphism of Eq. (30). 

THEOREM 13. If the vector z and its companion matrix Z are given 

by Eqs. (2) ami the set (30), (35), (28) respectively, then 

ll4II = lIZIll = IlZllal~ 

llzllz = 11~112~ 

Proof. The above results follow from Eqs. (52) and (53), and use 

of the previous theorem. 

The significance of the last result is that there is an isomorphism not 

only between the formalisms of matrix and vector continued fractions, 

but also between their convergence theories. 

APPENDIX A. HYPERQUATERNION VECTORS 

In this appendix we are concerned with a matter which must be 

dismissed at some stage, although it does not appear to contribute 

essentially to the development of the theory. 

It will be recalled that the inverse of the quaternion 

q = x + y(l)i + y@)j + y@‘k 

is given by 

q-1 = (*2 + yw’ + y(2)’ + yl”‘*) - ‘4 

where 

4 = x _ y(l)i _ y@)j _ y(3)k. 
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This immediately suggests that the concept of the inverse of a Irector whose 

components are complex numbers may be extended to quaternion lcctors: 

given the vector 

where 

then 

where 

Xgain the extension may be continued: wc suppose that associated 

with each element of a vector there arc K timelike coordinates and K’ 

spacelike coordinates; thus we now consider the vector 

0 -= (fO1, w2, . , (O)J ) (59) 

where 

and define the inverse of (59) to be 

(60) 

where 

LVe can easily construct an isomorphism which preserves addition, 

subtraction, and inversion according to formula (GO), between such 

vectors and certain matrices. We put 
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51 = 5 2 g’x,(~’ + 2 yy’yp’ ( ) 
t=1 l=l WI=1 1 

and find that 

where 

n 

i 

K’ 
fi = 2 2 Qxt(” - 

t=1 I=1 

if 

y (4’ = 1 
A 1 @=1,2 )..., n,Z=1,2 )...) K’), 

xI(J’xI’ (0 + XpXp = 0 (t=1,2,...,n-1; 

t’=t+l,t+2,...,n; 

1 = 1, 2, . . . , K’; 1’ = 1, 2, . . . , K’), 

Jpyt,~m) zzz Yt,(qq (t=1,2 ,..., n;t’=1,2 ,..., lz; (62) 

l=1,2 ,..., K’;m=1,2,...,K), 

y/W’ = - 1 (t=1,2 ,..., n;m=l,2 ,..., K), 

ytW)yt,W + yt,wyp = 0 (t=1,2,...,n-1; 

t’=t+l,t+2,...,n; 

m= l,2,. . ., K;d= 1,2,. . ., K). 

Given the set I’t(r) (t = 1, 2, . . . , r; 7 3 1ZKK’) of matrices which satisfy 
Eqs. (23), it is sufficient to take 

x (1) = r(r) 
t vt,l (t = 1, 2, . . . , n; t! = 1, 2, . . . , K’), 

(t=1,2 ,..., n;m=l,2 ,..., K) 

(where the integers (Q}, (17;) are made to correspond by a suitable 
diagonalization procedure to the positive integers (2, 3, . . .)) for Eqs. (62) 
to be satisfied identically. Thus the required isomorphism has been 
established. 
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In future developments of the theory, it maI. well he essential to 

distinguish between various spacelike and timelike coordinates but if, 

as we do in this paper, we restrict our attention to the formal requirements 

imposed by the vector-matrix isomorphism, it will be seen that the \.arious 

components (xt”(} and {y,‘“’ } with differing superscripts do not pla!. 

essentially separate roles; these components are merely combined without 

distinction of superscript in the Ixrious sums occurring in formulas (60) 

and (61). 

Thus in this paper we chose to present thca theory in terms of vector-s 

of complex numbers, rather than in terms of erectors such as (59); the 

use of the latter would greatly have complicated the formulation without 

adding substantially to the content of our results 

In this appendix \ve derive a functional form of the P algorithm and 

introduce the concept of a functional continued fraction. 

First, we suppose that the components of the infinite-dimensional 

vector z are functions of a comp1e.u variable, 6 say, and furthermore that 

z = (‘(O), z(h), z(Bh), . .). (63) 

BJ~ use of the definition of the xector inverse, we then easily derive 

_Issuming that the integral concerned esists, we are lccl inimrdiatcly to 

the concept of a functional in\-ersc 

Second, we replace the vectors (E;““} occurring in relationships (4) 

by a new set {B!~)*} given b! 

$y* xz @, $;‘,*, = hag!‘, , (Y :m 0, I, . ; w1 2 ~~ Y - 1, ~- Y, . .); 

(64) 

the vector epsilon algorithm relationships then evolve to the form 
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&$; = E;m_:l)* + {qeJ”+l)* _ el(")*)}-l 

(r = 0, 1, . . . ; m = - (r+2) - 1, - (r+2), . . .). 

Now we use the two substitutions (63) and (64) in conjunction, and 

let h tend to zero: every member of the E array then becomes a function, 

which we denote by r!“)(E) (we omit the asterisks for simplicity), and the 

E algorithm relationships evolve to their functional form 

r;“+(6) = r!“-f’Q) + {rl’“fl’@) - e;“‘([)}-’ (65) 

(r = 0, 1, . . . ;m=-(rf2)-l,---((r+2),...). 

L, integrable functions are closed with respect to addition, subtraction, 

multiplication by a finite scalar variable, and what we have defined to be 

inversion. Thus we obtain 

THEOREM 14. We are given a set of coefficients {u,(l)}, L, integrable 

functions of the complex variable 5‘. The functions {I,} are derived by 

application of relationships (65) to the initial values 

@j(E) = 0 (m = 0, 1 ) ,... > l i;,-,M-l’(t) = 0 (m = 0, 1, . . .), 

Ep(E) = 5 +E)rUt (0 -=c Ipj -=c 00; m = 0, 1, . . .I. 
t=0 

The only way in which the construction of the functions {I!“‘)} can break 

down is due to the presence of one 07 more equal pairs of functions such as 

E/“‘+‘)([) and E,(“)(E). Those fzcnctions {I!“‘)} of the E array which can 

be constructed are L, ftinctions. 

In analogy with the vector case, we may clearly regard the even order 
functional E array as being a functional Pa& table. 

We are, however, obliged to point out that we have not derived an 

isomorphism between functions of a scalar variable and certain linear 

operators, as was done between vectors and certain matrices in the main 

body of this paper. 
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